K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines

نویسندگان

  • Davide Anguita
  • Alessandro Ghio
  • Sandro Ridella
  • Dario Sterpi
چکیده

In this paper, we review the k–Fold Cross Validation (KCV) technique, applied to the Support Vector Machine (SVM) classification algorithm. We compare several variations on the KCV technique: some of them are often used by practitioners, but without any theoretical justification, while others are less used but more rigorous in finding a correct classifier. The last ones allow to establish an upper– bound of the error rate of the SVM, which represent a way to guarantee, in a statistical sense, the reliability of the classifier and, therefore, turns out to be quite important in many real–world applications. Some experimental results on well–known benchmarking datasets allow to perform the comparison and support our claims.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Evaluation of simple performance measures for tuning SVM hyperparameters

Choosing optimal hyperparameters for support vector machines is an important step in SVM design. This is usually done by minimizing either an estimate of generalization error or some other related performance measures. In this paper, we empirically study the usefulness of several simple performance measures that are very inexpensive to compute. The results point out which of these performance m...

متن کامل

Support vector machines classifiers of physical activities in preschoolers

The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a supervised protocol of physical activities while wearing a triaxial accelerometer. Accelerometer c...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Support Vector Machines for the Estimation of Aqueous Solubility

Support Vector Machines (SVMs) are used to estimate aqueous solubility of organic compounds. A SVM equipped with a Tanimoto similarity kernel estimates solubility with accuracy comparable to results from other reported methods where the same data sets have been studied. Complete cross-validation on a diverse data set resulted in a root-mean-squared error = 0.62 and R(2) = 0.88. The data input t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009